Cryogenics: A Comprehensive Guide


What Is It?

Although vacuum insulated cryogenics seems to be a rather unusual term to be used in common parlance, there has been researching done to prove that it can serve to be nothing less than a benediction for your engines. It has been said that it exponentially increases the productivity and the performance of your engine parts, leading to the increase in the overall performance of the machine as well.

Image result for Cryogenics

Although the concept of heat-treating and its benefits have been documented for a prolonged period of time, many are unaware of the similar, or maybe even better, effects extreme cold temperatures can have on the exposed material.

The Overview

Essentially, cryogenics is the procedure in which elements like steel and aluminum are left exposed to extremely cold temperatures, dropping down to -320° F in order to amplify their strength and durability. This is primarily achieved by the process of stabilizing the metal or the aluminum.

It is said that a proximity to the absolute zero, otherwise a temperature of -459.67° F, creates a more conducive environment to strengthen the metal, however, crossing -460° F could be eventually detrimental to the texture and the material would most likely explode and become nothing but powder.

Nevertheless, the proper application of Vacuum Insulated Cryogenics technology to engine and machine components could multiply the sustainability and longevity of the material three to fivefold in the least, and in some instances, even more than that range.

The Major Elements In The Procedure
The predominant consideration that has to be made to make this a successful venture is to design the cryogenic chamber or processor. The shape of this processor is what is responsible for dispersing the extreme good temperatures of -320° F without physically contacting the components. The only part that is reduced to this temperature is the chamber itself. Remember to take this into account as any contact between the liquid nitrogen and the components would inevitably lead to an accident.
Following that, you would have to account for the rate at which the temperature cooling is achieved and then reverted to the room temperature and then again tempered to +300-degrees F, and back to room temperature once more. Generally, this procedure spans the time period of four days.
This procedure is responsible for decreasing the temperature gradually at a steady rate per minute, ultimately holding it stable at -320° F for an extended period of ten or even twelve hours at a time. This is done to assure that the atomic microstructure is allowed to get closer together in order to nullify any internal voids and stress risers in the component in question.
When that is done, the heating part starts, eventually ending in +300-degrees F. This is to help the metal relax and adjust itself to the room temperatures.
The entirety of this procedure is what dynamically changes the strength of the metal in order to make it last longer than you can imagine.

If you happen to be in need of more consultancy on this subject matter, or if you would like to know more about the health and state of your engines, you can solicit the services of DSS Racing.